\qquad
Precalculus
Purpose: In this problem set, you will be utilizing our factoring methods, end behavior, and other tools to understand the graphs of polynomial functions.

For today, assume all leading coefficients are 1 or -1 unless you are given different information. We will address what happens in the other case another day.

Facts: If we look really close at zeros, we can get some information about how often that factor shows up. If

$$
f(x)=(x-a)^{n} p(x)
$$

where $p(x)$ does not have a factor of $(x-a)$, then more or less, the graph of f will behave like $g(x)=(x-a)^{n}$ really really close to the zero.

- If $n=1$:
- If $n=2$:
- If $n>1$ and odd:
- If $n>1$ and even:

1. Goal: Find the formula for the graph of $f(x)$ given below.

(a) What is the end behavior?
(b) Should your stretch factor be positive or negative? (For today, the stretch factor will be 1 or -1 .)
(c) What are the zeros of f ?
(d) For each zero, does the graph bounce, cross, or wiggle?
(e) Puzzle time! Put this information together to get a factored form of f.
2. Goal: Find the formula for the graph of $g(x)$ given below.

(a) What is the end behavior?
(b) Should your stretch factor be positive or negative?
(c) What are the zeros of g ?
(d) For each zero, does the graph bounce, cross, or wiggle?
(e) Puzzle time! Put this information together to get a factored form of g.
3. Consider the polynomial $f(x)=x^{2}(x-1)^{2}(2+x)$. Sketch the graph of $f(x)$.

4. Consider the polynomial $g(x)=-x^{5}+4 x^{4}-4 x^{3}$. Sketch the graph of $g(x)$.

5. Consider a mystery polynomial with a double root at -2 , a single root at 5 , a triple root at 0 , and a double root at 2. Assume the leading coefficient is negative.
(a) Sketch a graph of such a mystery function.

(b) Write an equation of such a mystery function.
6. Outline your strategy for graphing a polynomial that was given to you in formula form.
7. Outline your strategy for determining a possible formula for a polynomial given a graph.
8. Given weird data (like question 5), what is your strategy for handling a problem?
